Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis.
نویسندگان
چکیده
In photoelectrochemical cells, sunlight may be converted into chemical energy by splitting water into hydrogen and oxygen molecules. Hematite (α-Fe(2)O(3)) is a promising photoanode material for the water oxidation component of this process. Numerous research groups have attempted to improve hematite's photocatalytic efficiency despite a lack of foundational knowledge regarding its surface reaction kinetics. To elucidate detailed reaction mechanisms and energetics, we performed periodic density functional theory + U calculations for the water oxidation reaction on the fully hydroxylated hematite (0001) surface. We investigate two different concentrations of surface reactive sites. Our best model involves calculating water oxidation mechanisms on a pure (1×1) hydroxylated hematite slab (corresponding to 1/3 ML of reactive sites) with an additional overlayer of water molecules to model solvation effects. This yields an overpotential of 0.77 V, a value only slightly above the 0.5-0.6 V experimental range. To explore whether doped hematite can exhibit an even lower overpotential, we consider cation doping by substitution of Fe by Ti, Mn, Co, Ni, or Si and F anion doping by replacing O on the fully hydroxylated surface. The reaction energetics on pure or doped hematite surfaces are described using a volcano plot. The relative stabilities of holes on the active O anions are identified as the underlying cause for trends in energetics predicted for different dopants. We show that moderately charged O anions give rise to smaller overpotentials. Co- or Ni-doped hematite surfaces give the most thermodynamically favored reaction pathway (lowest minimum overpotential) among all dopants considered. Very recent measurements (Electrochim. Acta 2012, 59, 121-127) reported improved reactivity with Ni doping, further validating our predictions.
منابع مشابه
The (0001) surfaces of α-Fe2O3 nanocrystals are preferentially activated for water oxidation by Ni doping.
Photoelectrochemical water oxidation on hematite has been extensively studied, yet the relationship between the various facets exposed, heteroatom doping, and associated electrocatalytic activity has not been adequately explored. Here, hematite nanocrystals were synthesized with continuous tuning of the aspect-ratio and fine control of the surface area ratio of the (0001) facet with respect to ...
متن کاملThe Effect of Different Dopants (Cr, Mn, Fe, Co, Cu and Ni) on Photocatalytic Properties of ZnO Nanostructures
ZnO structures with different dopants (1mol% Cr, Mn, Fe, Co, Cu and Ni) have been synthesized via a simple hydrothermal method using sucrose as a template. These doped ZnO nanostructures characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL). The photocatalytic property of these synthesized materials was studied by a pho...
متن کاملHydrogen dissociation and diffusion on Ni- and Ti-doped Mg(0001) surfaces.
It is well-known, both theoretically and experimentally, that alloying MgH(2) with transition elements can significantly improve the thermodynamic and kinetic properties for H(2) desorption, as well as the H(2) intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previousl...
متن کاملSynthesis, Characterization and Investigation of Photocatalytic Activity of transition metal-doped TiO2 Nanostructures
In this work, M-doped TiO2 nanostructures (M: Fe, Co and Ni) were synthesized by reverse microemulsion method. The as-prepared products were analyzed by different techniques such as scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The effect of various dopants (Fe, Co and Ni) on ba...
متن کاملEnhanced photocatalytic activity of sonochemical derived ZnO via the co-doping process
In the present study, Co-ZnO and Co-Ni-ZnO nanoparticles were synthesized by sonochemical methods and the structural and optical properties were investigated through Fourier Transform Infrared spectroscopy (FTIR), UV-Vis spectroscopy, Field Emission Scanning Electron Microscopy (FE-SEM), X-Ray Diffraction (XRD), and Photoluminescence spectroscopy (PL) methods. Morphology of nanoparticles obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 134 32 شماره
صفحات -
تاریخ انتشار 2012